

Water Chemistry

Or how to overcomplicate brewing – Greg Berner

Overview

- Water Composition
- Reading a water report
- Brewing Salts
- Mash pH and benefits
- Balancing Minerals
- Online resources

Water Composition

- Calcium (Ca²⁺) \rightarrow 50 150ppm (up to 250ppm)
- Magnesium(Mg²⁺) \rightarrow 0 30ppm (up to 50ppm)
- Sodium (Na+) \rightarrow 0 150ppm (up to 200ppm)
- Chloride (Cl) \rightarrow 0 250ppm (up to 300ppm)
- Sulfate $(SO_4^{2-}) \rightarrow 50-150$ ppm or 150-350 (up to 750ppm)
- <u>pH and Alklanity (HCO₃⁻)</u> → 0-50ppm pale, 50-150ppm amber beers, 150-400ppm for dark beers

Reading a water report

Parameter	Testing Result Annual Average (mg/L)	Saskatchewan Environment Water Quality Objective (mg/L)
Sodium (Na)	54.8	<200 (AO)
Sulphate (SO4)	175	<500 (AO)
Total Dissolved Solids (TDS)	432	1500
Manganese (Mn)	<dl< td=""><td>0.05 (AO)</td></dl<>	0.05 (AO)
Nitrate (NO3)	0.35	45
Potassium (K)	6.4	No Standard
Hardness (CaCO3)	220	800
Iron (Fe)	<dl< td=""><td>0.3 (IMAC)</td></dl<>	0.3 (IMAC)
Magnesium (Mg)	25.6	200
Calcium (Ca)	44.8	No Standard
Chloride (CI)	20.6	<250 (AO)
Fluoride (F)	0.11	1.5
Alkalinity (total)	140	500

- Regina Water Report from Feb 2019 (link here)
- Values highlighted are the relevant ones
- mg/L = ppm
- pH is not found on the report
 - I measured it in my lab at 7.08

Brewing Salts

- Calcium Carbonate (CaCO₃) aka "Chalk"
 - This has limited solubility in water, it must be added to the mash instead.
 - Raises the pH of the mash
 - Used for adding alkalinity to soft water for dark beer.
- Calcium Sulfate (CaSO₄•2H₂O) aka "Gypsum"
 - Source of calcium and sulfate ions. Sulfates add to the "bite/crispness" for hop bitterness
 - Lowers the pH of the mash
 - Good way to add calcium if the water is low in sulfates

Brewing Salts

- Calcium Chloride (CaCl₂•2H₂O)
 - Useful for adding calcium when the water is low in chlorides
 - Lowers the pH
- Magnesium Sulfate (MgSO₄•7H₂O) aka "Epsom salt"
 - Source of magnesium and sulfate ions. Sulfates add to the "bite/crispness" for hop bitterness
 - Slightly lowers the pH of the mash
 - Use sparingly as the limit for Mg²⁺ is quite low at 50ppm.

Brewing Salts

- Sodium Bicarbonate (NaHCO₃)
 - Raises the pH and alkalinity
- Potassium Metabisulfite (K₂S₂O₅) aka "Campden Tablets"
 - Eliminated chloroamines from water
 - Chloroamines can be a source of phenolic off flavours

Mash pH and benefits

- pH is a measure of how acidic or basic something is
 - $PH = -\log[H_3O^+]$
- Ideal range is 5.2-5.6 for your mash
 - Improved enzyme activity in your mash thus more starch to sugar conversion
 - Improved yeast health in wort
 - Inhibition of bacterial growth
 - Better hops extraction during boils
 - Improved clarity
 - Higher storage stability for aging beer
- This can be adjusted with either acids (lactic or phosphoric) or

acidulated malt

Balancing Minerals

- 2:1 SO₄²⁺ to Cl⁻ is good for bitter beer
- 1:2 SO₄²⁺ to Cl⁻ for mild ales
- 1:3 SO₄²⁺ to Cl⁻ for stouts and porters
- Chloride and Sodium add the maltiness of a beer.
- Sulfate highlights bitterness and reduces malt flavour.
- 0-50ppm HCO₃ for pale beers
- 50-150ppm HCO₃ for amber beers
- 150-400ppm HCO₃ for dark beers

Online Resources

Bru'n Water (https://sites.google.com/site/brunwater/)

Brewer's Friend (https://www.brewersfriend.com/mash-chemistry-and-brewing-water-calculator/)

